
N88:16387

DEVELOPMENT OF A TASK-LEVEL ROBOT PROGRAMMINGAND SIMULATION SYSTEM*

H. Liu, K. Kawamura, S. Narayanan**, G. Zhang, H. Franke & M. Ozkan
Center for Intelligent Systems, Vanderbilt University

Nashville, Tennessee 37235, USA

H. Arima
Process Control Equipments Design Dept.

Tokico, Ltd., Kawasaki, JAPAN

ABSTRACT

This paper presents an ongoing project in developing a Task-Level Robot
Programming and Simulation System (TARPS). The objective of this research is
to design a generic TARPS that can be used for a variety of applications. Many
robotic applications require off-line programming, and a TARPS is very useful
in such cases. Task-level programming is object-centered in which user
specifies tasks to be performed instead of robot paths; graphics simulation
provides greater flexibility and also avoids costly machine setup and possible
damage. A TARPS has three major modules: world model, task planner and task
simulator. The system architecture, design issues and some preliminary results
are given in this paper.

I. INTRODUCTION

Robot programming systems can be divided into three broad categories:

guiding systems in which the user leads a robot through the motion to be

performed, robot-level programming systems in which the user writes a computer

program specifying motion and sensing, and task-level programming systems in

which the user specifies operations by their desired effects on objects [8].

Guiding systems are primitive, e.g., there are no loops, conditionals, or

sensors, but are easy to use and can be implemented without a general-purpose

computer. Robot-level programming systems have the capabilities lacked by

guiding systems; however, the user must be familiar with both computer

programming and robot manipulation. Task-level programming is an attempt to
shift the burden of detailed robot programming from the user to the computer

where only goals or tasks need to be specified by the user. Recently, more and

more robotic applications require robot programming to be done off-line. This

is often complicated by frequent task change and critical timing requirement.

A Task-Level Robot Programming and Simulation System (TARPS) can be very

useful in such cases since task-level progrmming is mL'ch more efficient than

robot-level programming and guiding, and through computer simulation extensive

experiments and analyses can be performed without the high cost of machine
setup and risk of damage.

The system architecture of the TARPS being developed consists of three

major modules: world model, task planner and task simulator as shown in Fig.

1. Based on the world model, the task planner translates object-centered task

specifications to appropriate robot motion sequences. The robot motion se-

* This work was supported in part by Tokico, Ltd.

** Mr. Narayanan is now with Dept. of Elec. & Comp. Engr., Univ. of Calif.,
Davis, CA 95616.

143

_:Z_ED|NG PAGE BLANK NOT FILI_ F_.:_<,,::..:.: _,,,..:-._ ..,..,_ _,"I.v_.'_

quences and the world model can be simulated on the graphics terminal. The
high-level task planning part is implemented in LISP, object model in FLAVORS,
and robot motion synthesis in FORTRAN.Certain important issues such as object
representation, collision avoidance and trajectory planning are also ad-
dressed.

II. WORLD MODEL

Task-level programming and simulation cannot be achieved without a world
model. This world model should include a robot model, physical object model
and environment model. The robot is modeled as a mechanical linkage system
with various joint parameters and constraints. These parameters and spatial
geometry of the manipulator are needed to compute and simulate robot motion.
3-D object representation has been a major research topic in computer vision,
CAD/CAM and computer graphics. A 3-D object can be represented by one of the
three general classes: (I) surface or boundary, (2) sweep and (3) volume. We
adopted a surface-based representation scheme based on the evaluation in [4]
and the following reasons:

1) We plan to derive the object model from the CAD model, and the sweep
representation has been used only to a very limited extent in CAD.

2) Surfaces can be recognized by vision or range sensors and so any repre-
sentation scheme utilizing surface descriptions can be easily integrated into
a sensor-based robot planning system.

Any 3-D planar object can be represented by a graph where every vertex,
edge and surface of the object corresponds to a node in the graph, and the
arcs of the graph are the connected to relations. Each node can be implemented
as a computational object with certain slots. For example, a vertex node may
have slots for vertex_id, x, y, and z coordinates, and relatededges. Data
from other nodes can be obtained by message sending. At present, the object
model is entered through a menu-driven interface; simple object models such as
rectangular blocks, cylinder, cone and sphere can be entered through the menu.
Once simple object models are defined, composite objects can be constructed in
a way similar to that of Constructive Solid Geometry (CSG) representation.
Algorithms for constructing object model from CAD data and B-splines repre-
sentation are under development. The environment model has a world frame and
coordinate frames for objects and robots. Semantic network and homogeneous
transform are used to express their positions with respect to one another.

A. Surface-Based Object Representation

The surface representation of objects makes use of "faces." Any "face" of

the object can be considered as a subset of the enclosing surface or boundary

of the object. Conversely, the union of all possible "faces" of an object

constitutes the boundary of that object [11]. For 3-D planar object the repre-

sentation primitives are boundary, faces, edges and vertices. The primitive of
a "physical object" is represented as a "computational object" [12]. A com-

putational object is typically characterized by a set of "instance-variables"

whose values are used to determine the current state of the object and its

relation with other objects. Furthermore, there are procedures which can be

used to determine the attributes of other objects and to make decisions to

schedule operations concerning that object. Listed below are some of the

144

information required to characterize the face. Each face of the object is

represented using the same scheme as is used for other primitives.

face id: Used for the purposes of identification of a face.

adjacent_to: Has a list of face id's as its value.

normal vector: Equation of the vector normal to the face. This value can be

computed from the face vertex positions of a planar surface.

For a quadric surface, however, we require information about

the surface shape.

related_edges: A list of edge_id's that belong to the face.

B. Conversion from CAD Data

The modelling scheme described earlier requires a lot of information to

represent the object. There is an increasing need to obtain such information
from a CAD data base of the task environment [4]. For example, the dimensions

of a rectangular block can be obtained from a CAD model of the block. From

these dimensions, it is possible to select a reference frame for the block and

then compute the relevant information such as: 1) Location of vertices with

respect to the assigned object reference frame; 2) labelling of edges by

applying a rule that any two vertices constitute an edge; 3) labelling of

faces by computing those sequences of edges which form loops, i.e., staring

from any vertex, find those edges which, when traversed, lead us back to the
initial vertex without going through any vertex twice; and 4) computation of

the face normal vector from the equation formed by the plane described by the
face's vertices.

III. TASK PLANNING

The role of the task planner is to take task-level specifications from

the user and generate manipulator-level specifications which can be used for

simulation or sent to the robot controller. Task specifications may appear in

various forms ranging from a pair of initial and goal states to an explicit
sequence of subtasks. If only a goal is given, the task planner would need

substantial domain knowledge in order to generate sequence of subtasks. An

intermediate step might be to let task planner check task specifications and

provide recommendations. Task planning can be carried out in two steps: task

synthesis and robot motion synthesis. At the top-level is a task manager

responsible for the selection and coordination of task skeletons, procedures

to perform specific subtasks. It is also plausible to use a robot-level

programming language between task synthesis and robot motion synthesis, i.e.,

task specification (high level) --> robot program (medium level) --> robot

motion (low level). The robot-level programming should be accessible by the
user.

Robot motion synthesis depends largely on type of applications. For

example, assembly operations require compliant and guarded motion, while arc

welding and spray painting operations require accurate motion and trajectory
control. Object and world model is indispensable in robot motion synthesis. We

attach homogeneous transform to symbolic spatial relation to express quantita-

tive relation among objects and robot. The object and world model changes

145

dynamically as task goes on. An efficient and elegant way to update the model
is by message sending in object-oriented paradigm. Collision avoidance is
another important problem in robot motion planning which will be discussed in
later sections.

We use a typical spray-painting robot to illustrate task synthesis and
robot motion synthesis. Assume that five faces of a large rectangular block
are to be painted except the face attached to a fixture which rotates the
block.

A. User Interface

The user interface elicits information that is required from the user in
order to accomplish the task. Typically, TARPS requires to know about the
environment and objects. The user supplies data to completely define the
object size, shape and location through the object representation primitives.
This helps TARPS to configure the object and environment model. Besides infor-
mation required to define the environment, the user also supplies some
parameters that are required for the performance, monitoring and analysis of
the task.

B. Task Synthesis

The task synthesizer acts as a scheduler and utilizes the relevant plan
information for the performance of the task. The input to the task synthesizer
comprises user-specified parameters defining the environment and the task. A
given task, e.g., paint the block, is decomposed into a sequence of subtasks
using heuristic planning rules, which are primarily concerned with the selec-
tion of task parameters to obtain a satisfactory task performance. One such
heuristic rule is that "adjacent faces of an object are painted in sequence".
The selection of adjacent faces, however, further depends on the constraints
on the mobility of the work-piece and the reachability or work-envelope of the
robot. After decomposition, each subtask is considered independently and
manipulator paths are generated for each subtask in accordance with subtask
constraints. An example of such a plan decomposition sequence for painting the
block is: (I) paint face I, (2) rotate block (+90), (3) paint face 2, (4)
rotate block (+90), T5) paint face_3, (6) rotate block (+90), (7) paint
face 4, (8) paint face 5.

C. PATH GENERATION

Generally speaking, for painting robot there are two types of motion:
free motion and paint motion. Free motion comprises those motions between home
position and initial positions of subtasks. Collision avoidance is usually tile
only concern in free motion. Paint motion, on the other hand, requires more
accurate trajectory control. For example, the spray gun must always be perpen-
dicular to the surface to be painted, and the distance between spray gun and
the surface must remain constant. Once task parameters such as initial con-
figuration, etc. have been determined, the task skeletons are responsible for
calculating the path of the manipulator that can satisfactorily accomplish the
task.

146

1. Motion P]anning

Once the manipulator is at the initial position it is ready to start

performance of the task. The path followed by the end-effector depends on the

"paint-patterns." A paint pattern is the path that a spray gun attached to the

end-effecter moves to deposit paint on the work-piece. Such a pattern depends

on various parameters like shape of the work-piece, material properties of the

paint, etc. Until now, generation of a painting pattern has been mostly ex-

perimental by using a guiding system. Such a trial and error approach is often

time consuming and inefficient. We felt it necessary to develop an algorithm

for the painting process. Algorithms for painting planar surface have been

developed; those for painting curved surfaces can use polyhedral approximation

and are under development.

Once a particular face of the work-piece has been painted, there is

relative motion between the robot and the work-piece in order to position the

manipulator at a suitable initial position to paint the next face as scheduled

by the task planner. Fig. 2 shows the robot path from home position to the

initial position for painting face 1. The inter-subtask motion has to take

into account the following two factors: 1) Avoidance of collision during the

manipulator and/or work-piece motion and 2) movement of the work-piece between

subtasks to provide an easy access for the manipulator to paint the relevant
face subject to the constraints on the freedom of work-piece to move in the

workplace. Inverse kinemetics and collision detection are computed in this

phase.

2. Collision Avoidance

There have been many studies relevant to the planning of a collision-free

path. Two approaches have been used most often. One approach is "hypothesize-

and-test" method which focused on algorithms for detecting collision among

solids. Another approach consists of explicitly representing the set of those

robot configurations which are collision-free [6],[7]. However, an efficient

algorithm for computing a collision-free path for general robots is still not
available.

We employ two strategies to plan collision-free paths in TARPS. The first

one is using an heuristic method to plan a collision-free path which is

similar to the second approach mentioned above. The other uses a collision

detector to detect a possible collision during simulation. Whether the colli-

sion detector need to be executed can be determined by the high level task

manager or by the user. Since two different motions are used here, we

developed different algorithms for free and paint motion. In free motion we

need to make sure that the end effector is in the safe space. In paint motion

we consider other links since end effector is always some distance away from

the workpiece. In inverse kinemetics computation, usually multiple solutions
are obtainable. In such case we can select a collision-free solution. If none

of them is collision free, then a different path must be generated.

IV. SIMULATION AND GRAPHICS

To evaluate and ensure good performance of the robot task planning we

need to have the capability of analyzing the kinematics and dynamics of the

robot manipulator. This also calls for the capability of presenting actual

147

F Vilusl i_ I Object
i Sensor Model

Interfsce

DRIGINAL PAGE IS

DE POOR QUALITY

•o.dMod,, I_" H _H £nvironment Robot Desiln

Model

I [Model I[[D.t.B.,e

I

]

CraphicJ I
Diaplay

Task Skeletons

Motion Motm_ Surface

Al|oritJ_rn

J

_s_u"*°rI' tD'_I(ADAMS) F_2e

Figure 1: TARPS system architecture

Figure 2: The complete (collision-free) motion sequence

from x-direction to y-direction.

148

robot and workpiece motion graphically. The software used for this purpose

must be extensible to encompass special requirements, e.g., nonlinear force

and torque calculations, in the form of user-defined functions or subroutines.

The Automatic Dynamic Analyses of Mechanical Systems (ADAMS) was selected as

our simulation tool which provides us with such facilities. The actual equa-

tions governing the manipulator kinematics and dynamics can be programmed in

ADAMS which can then be interfaced and run as a process when required by the

LISP-based planner. The results of the simulation can be analyzed by the user

or planning program to decide on the actions to take.

V, CONCLUSION

In this paper we have presented a prototype of Task-Level Robot Program-

ming and Simulation System. The key issues addressed here are world modeling,

object representation and collision-free task planning. We adopted a surface-

based object representation for the reasons that it is ideal for sensor-based

robot control and is easily accessible from CAD database. Task planning is

based on a hierarchical approach while collision problem is taken into con-

sideration during path synthesis. When sensor systems are incorporated, parts

localization techniques can be applied to obtain actual position and orienta-

tion of the objects. It is our belief that task-level programming will be

useful in a wide variety of applications, and we are also investigating the

parallel hardware architecture for task-level systems.

VII. REFERENCES

1. ADAMS User's Manual, Mechanical Dynamics, Inc., 1985.

2. D.A. Ballard & C.M. Brown, Computer Vision, Prentice-Hall, Inc., New
Jersey, 1982.

3. P.J. Besl & R.C. Jain, "Three-Dimensional Object Recognition," ACM Com-

putin 9 Surveys, 17(1):75-145, March, 1985

4. B. Bhanu & C-C. Ho, "CAD-Based 3D Object Representation for Robot

Vision," Computer, 20(8): 19-35, August 1987.
5. M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Perez & M.T. Mason,

(Eds.), Robot Motion: Plannin 9 and Control, The MIT Press, Cambridge,
Mass., 19--8-3-:--.

6. R.A. Brooks, "Solving the Find-Path Problem by Good Representation of

Free Space," Proc. 2nd AAAI Conf., Carnegie-Mellon, August 1982.

7. T. Lozano-Perez, "Automatic lS_anning of Manipulator Transfer Movements,"

IEEE Trans. on System, Man, Cybernetics SMC-11, 10, 1981.
8. .T:---L_-Pe-Fez, "Robo-t Programming, _ Proc. IEEE, 71(7): 821-841, July

1983.

9. R.P. Paul, "Manipulator Cartesian Path Control," IEEE Trans. on _stem,
Man, and Cybernetics, SMC-9, 11, 1979.

10. R.P. Paul, Robot Manipulators, Mathematics, Programmin 9, and Control, MIT
Press, 1981.

11. A.A.G. Requicha, "Representations for Rigid Solids: Theory, Methods, and

Systems," ACM Computin 9 Surveys, 12(4):437-467, Dec. 1980.
12. D. Weinreb & D. Moon, LISP Machine Manual, Symbolics, Inc., 1981.

149

